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Abstract 

The basic principles of dynamic seismic analysis of elastic . 
structures are reviewed and the important parameters governing structural 
response are noted. The concept of the response spectrum is stressed; 
its application in the analysis of multi-story structures by modal super• 
position techniques is discussed and the role played by the spectrum in 
revealing earthquake ground motion characteristics is commented upon. 
The procedure for modal spectrum analysis of multi-story structures is - 
summarized and illustrated by a simple example. 

Introduction  

The rational design and construction of an earthquake-
resistant structure requires a knowledge of the lateral forces developed 
in the structure by the earthquake. The uncertain nature of future 
ground motions and the difficulty of precisely evaluating the appropriate 
physical properties of real structures limits our ability to provide an 
exact calculation of these forces. Nevertheless, sufficient progress has 
been made to allow us to predict the general response of structures to 
earthquake ground motions and so to ensure their survival with reason-
able confidence. 

An earthquake generates random motions of the ground in both 
the vertical and horizontal directions. If we assume that there is 
negligible interaction between the ground and the building, the structur-
al foundations are excited with these sans ground motions and inertia 
forces are induced in the building by virtue of its mass. lbese forces 
can be evaluated theoretically by contemplating the structure as en 
idealized damped system of many degrees of freedom, subjecting its base 
to the transient erratic motion of the earthquake, and determining its 
response. While amenable to mathematics, this represents a complex 
dynamic problem, the essential features of which will be examined below. 
The presentation is intended as an introduction to the subject of earth- 
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quake engineering and is based largely on the publications of Housner (1)% 
Hudson (2), Clough (3) and Blume, Newmark and Coming (4). 

Earthquake Response of Single-Story Structures  

The simplest dynamic model which will reveal the essential 
parameters relating structural response to earthquake disturbance is the 
single-degree-of-freedom system. Later it will be shown in very general 
terms that the behaviour of many complex multidegree -of-freedom structures 
can be represented by an appropriate superposition of a number of these . 
simple systems. 

Figure 1 is a schematic representation of the deformed shape 
assumed by an idealized one-story structure whose rigid foundation under-
goes a displacement equal to the earthquake motion, x, of the ground. 
Due to the flexibility of the structure and the inertia of its mass, m, 
the columns deform thereby permitting the mass to displace relative to 
the ground by the amount u = y - x, where y is the displacement of the 
mass from its original position. These displacements are a function of 
time, t, and the structure is therefore excited into motion which is 
opposed by the shear stiffness, k, of the columns and the inherent fric-
tion of the structure, which is a form of energy dissipation and which is 
normally referred to as the damping. For a linear elastic system the 
shear or lateral force, V, exerted by the columns on the mass and on the 
ground may be expressed as 

V ku (1) 

The friction of a structure can be described satisfactorily by 
the condition of viscous or linear damping. Linear damping results in 
damping forces directly proportional and opposed to the velocity; the 
proportionality constant, c, is known as the damping coefficient. When 
motion is restricted to translation in one direction** only (as represent- 

Numbers in parenthesis refer to References at end of paper. 

** Systems which can vibrate in both horizontal directions respond to 
both horizontal components of ground motion and have a resultant 
horizontal time response which varies continuously in direction. How-
ever, structures are normally designed to withstand ground motion 
components assumed to act non-concurrently in the direction of each of 
the main axes of the structure. It is also customary to ignore the 
influence of vertical vibrations because of the reserve strength of 
the framing for vertical (gravity) loads. 



ed by u), the differential equation governing the response of the flex-
ible structure may be written as 

du + k u = -md2(x + u)  
c  dt dt2 dt2  

or +k u= (2) 

where the superscript dot notation indicates differentiations with respect 
x to t. is the horizontal component acceleration of the base or ground 

which is identical with that recorded by a strong-motion accelerometer 
during an earthquake. 

If, as is normally encountered in building structures, the 
damping is small (n < 0.2) the solution of equation (2) for the response 
u at any time t after starting from rest, is given by the Duhamel 
integral (5) as 

t -n(-2w  )(t -T) T 
u (t) 6 T I x(1

) 
 4

sin 2w(t ... t )dt (3) 
-Tr 0 T 

; : 21 
n 2 fraction of critical damping 2 c 2  C • The 

cc 71.47: 

critical damping, cc, is the minimum value of c resulting in 
a non-oscillating response. 

It should be noted from equation (3) that the dynamic response 
u of the structure is dependent on the character of the structure, 
defined by its natural period of vibration Ca function of its stiffness 
and weight) and its damping, and ca the character of the ground, 
acceleration. 

The character of the ground acceleration is exhibited by the 
integral appearing equation (3) namely 

t 4-n(2=.)(t - t) 

S(t) 2 e
21 sin 4t - T) dT 

(4) 

We denote the maximum value of this integral by the symbol Sv. That is, 
2w -n() tt - 

Eft  x(T) • sin (t T)dT3 (5) 
max 
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If the displacement u(t), equation (3), is differentiated 
expressions for the velocity, u(t), and acceleration, u(t), will be obtain-
ed. For small damping and earthquake ground motions it is found (6) that 
the maximum value of fi(t) differs only slightly from Sv  and further, that 
the maximum relative displacement, maximum relative velocity and maximum 
absolute acceleration are simply related by the following expressions: 

u(t) = S = max. relative displacement 2 T S (6) 
max d 2w v 

u(t) = S = max, relative velocity = S (7) 
max v 

'y(t) = S = max. absolute acceleration 2 2w S (8) 
max a T v 

Sd- S
v 
 and S

a 
 are referred to as the displacement, velocity and 

acceleration response spectrum respectively. 

The Response Spectrum  

For a particular ground acceleration input record, and for a 
particular n and T, the integral defining S(t) can be evaluted and the 
maximum value, Sv, observed. The plot of such maxima for a range of 
structural periods T yields a graph or influence line of maximum velocity 
response which is the velocity response spectrum. A family of such spect-
rum curves can be obtained corresponding to different n values. A 
schematic representation of the concept of response spectrum is shown in 
Fig. 2. 

By virtue of the complex nature of the ground acceleration, the 
computation required for the evaluation of the response spectrum is ex-
tremely great and is best done by analogue or digital computers. The 
velocity spectrum for the N-S component of the El Centro, Calif., earth-
quake (7) of May 18, 1940 is presented in Fig. 3. 

The response spectrum could also be plotted in terms of dis-
placement or acceleration. In view of the relations expressed by equa-
tions (6), (7), and (8), it is possible to show the complete picture of 
Structural response on a single, four-way log grid plot, as illustrated 
in Fig. 4. The maximum velocity, acceleration and displacement experienc-
ed by a single-degree-of-freedom structure when excited by the El Centro 
earthquake can be read directly from the graph. Similar curves can be 
plotted for other ground disturbances. 

It should be noted in Figs. 3 and 4 that the zero damped spectra 
are characterized by abrupt oscillations indicating that the response is 
very sensitive to small period changes. The modifying influence of damp-
ing is seen to be very marked; small amounts of damping reduce the 



sensitivity to period changes and produce a large reduction in maximum 
response, particularly at the short-period end of the spectrum. 

Application of Response Spectrum  

The maximum seismic force developed in the single-degree-of-
freedom system as a result of a given earthquake is directly obtainable 
from the velocity spectrum of that earthquake. Thus, when the spectrum 
is known the maximum base shear, VB, transmitted into the structure from 
the ground, which is equal to the lateral seismic force developed in the 
colugns, may be directly expressed through equation (1) as 

V
B 

=ku sekT S 
max 2i 

or alternatively 

V = 
B 

(cif V) w = ( = ew 
T g (9) 

where W denotes the weight of the structure and g is the acceleration of 
gravity. C, known as the seismic coefficient, is essentially the acceler-
ation spectrum and represents a plot of the base shear coefficient as a 
function of the period. Although it is a direct indication of the seismic 
forces produced by an earthquake, the velocity response, which is general-
ly favoured in scientific studies, seem to represent a more fundamental 
property of the earthquake. 

Earthquake Design Spectra  

Before the spectrum concept outlined above can be used in 
practice it is necessary to establish appropriate earthquake design 
spectra. Although the exact nature of future earthquake ground motions 
is not known, a study of the characteristics of existing spectra shows 
that there are basic similarities between them which permits certain 
idealizations in the prediction of general response spectra for simple 
elastic systems. Based on numerous strong-motion records of past 
disturbances, Housner (1) has established average response spectra which 
may be taken to represent the average properties of future ground motions. 
These are shown in Fig. 5 and 6 and correspond to large magnitude earth-
quakes at moderate epicentral distances (<45 miles). In practice, the 
ordinates of these curves must be multiplied by scale factors appropriate 
to the severity of the design earthquake being considered; for the 1940 
El Centro earthquake this factor is 2.7. These average spectra yield the 
maximum response to be expected when the system is subjected to ground 
motions of the stated intensity. 



The designer may use other methods of predicting structural 
response to future earthquakes, such as the idealized spectra (4) repre-
sented by the broken bounding lines forming the two polygons located in 
the upper part of Fig. 4. These lines are based on the fact that, for 
structures with 5 - 10% critical damping, existing spectral character-
istics reveal spectral accelerations, velocities and displacements which 
are approximately 2, 1.5, and 1 times as great as the maximum ground 
acceleration, maximum ground velocity and maximum ground displacement 
respectively, of the particular design earthquake. For the El Centro 
1940 earthquake, these ground motions are represented by the polygon made 
up of the three broken bounding lines in the lower part of Fig. 4. For 
structures with less than 2% critical damping, the numerical coefficients 
mentioned above are very nearly doubled in each case. 

To complete our description of response spectrum analysis of 
single-degree-of-freedom systems it is desirable to examine the effect of 
size and distance of earthquake on the general appearance of spectrum 
curves. This is conveniently summarized in Fig. 7 which shows Housner's (1) 
smooth representation of the average undamped velocity spectra for 
different ground motions. 

The reduction of ground motion intensity (and structural response) 
with distance is apparent by a comparison of curves A and B. This reduc-
tion is particularly accentuated in the short-period range of the spectrum 
and is due to the fact that the high frequency components of ground motio►  
are attenuated more rapidly than the lower frequency components. As a 
result, tall flexible (high period) structures at relatively long distances 
from the centre of an earthquake will be more nearly attuned to the long-
period range of ground motions than low rigid (short period) structures 
and may be expected to experience a relatively greater response and to 
suffer a proportionately greater degree of damage than low, stiff struc-
tures. Conversely, a nearby earthquake will concentrate its effects on, 
and tend to cause the most severe damage to, low rigid structures. Finally, 
it may be concluded from curve C that, for small nearby earthquakes, the 
low period components of ground motion are relatively exaggerated in the 
absence of major attenuation and low, stiff structures are thereby more 
adversely excited and are apt to suffer more serious damage than tall 
flexible buildings. 

The development of the response spectrum concept and the establish-
ment of spectrum curves for all available strong-motion earthquake records 
represents a major break-through in the seismic analysis of engineering 
structures. In the next section it will be shown that the maximum response 
of a mode of vibration of a multi-story structure can be determined from 
the response spectrum curves for single-degree-of-freedom systems. 

Earthquake Response of Multi-Story Structures  

The seismic analysis of a multi-story structure is more complex 
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than the corresponding analysis described for the simple oscillator of 
Fig. 1. However, for linear structures with small damping, the applica-
tion of normal mode theory (8) offers a simplified approach to the 
problem. 

According to the normal mode concept, a multi-story structure 
can be represented by a number of equivalent one-degree-of-freedom systems# 
In general, for an n degree of freedom structure there are n of these 
equivalent systems; they are characterized by the n natural periods and 
associated normal mode shapes (configurations) in which the actual 
structure may vibrate. The distinguishing feature of a normal mode 
vibration is the fact that the ratios of displacements of all parts of the 
system are maintained constant with time. When transiently excited by 
the earthquake disturbance the equivalent single-degree-of-freedom systems 
respond in independent motions of the individual modes. Then the time 
responses of the equivalent systems, taken in various proportion accord-
ing to appropriate modal participation factors, are combined to yield the 
complete time response of the actual multi-story structure. 

The modal superposition principle may be expressed in math-
ematical form. For a multi-story structure idealized as n discrete masses, 
Fig. 8, it may be shown (9) that, corresponding to equation (3) of the 
one-mass system, the lateral displacement of the ith mass, ml, relative 
to the ground is 

n Cr) 
T Em.A 

n r (0 j=13 1 t -2w n 
ui(t) = - E -...A1 I X(T)e Tr; r 

r=1
2w n 1 _12 o 

j!1
m
J
A
i 

 

which represents the contribution of all the normal modes. The r super-
script is used to identify the particular mode of vibration. 

T = the period of the.r.th  normal mde of.vibraticn 
Ai(r) = the relative displacement of the luu mass in the rth  

mode. 

The A's describe the shapes of the principal modes of vibration and for 
each modal period there is a set of these coefficients; since only the 
shape of a normal mode is significant, it is the ratios of the A's which 
are to be determined and not the values of the individual A's. It is 
generally the practice to assign one of the amplitudes to be unity, in 
which case the modes are said to be normalized to unity. 

Note that the earthquake response problem is again controlled 
by the characteristics of the ground disturbance, as expressed by the 
integral term, and the characteristics of the structure. The structural 
characteristics are defined by the modal shapes and periods, which are 
functions of the mass and stiffness distribution of the structure, and 
the modal damping values. The mode shapes and natural periods of a 



structure may be evaluated by numerical procedures (4) or through the 
frequency determinant approach (8). General computational procedures are 
not available for evaluating the damping of a structure and the value of 
this parameter must be based on judgment and the result of experiments. 

The contribution of the rth mode alone is 

-2w n(t - I) 
E miA (r)  i 

(r) Tr  (r)j=1 2w 
u t.( ) =Ai   ft ')7 (t) r sin—. (t - t)dt (11) 

Tr  
2w 

E m. (r)2 
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In design it is the maximum response which is of primary interest, rather 
than the complete time response. Since the maximum value of the integral 
in equation (11) is simply the velocity spectrum in the r  mode, it 
follows that the maximum response in this mode is 

(r) (r) (r) (r) (r) 
Cui 7 a - 'r Ai A

r
S
v 

= A
i

u
r

S
d max.  IT 

where or  = modal participation factor of the rth  mode.  

n 
Z m•A j

(r) 

a
r 

a =1 

Other quantities of interest can be similarly expressed. By . • 
differentiating equation (10), the absolute acceleration of any mass, y4 ; 
can be obtained since y=u + In the rth mode this can be written as " 

(12)  

(13)  
2 

E m.A4‘" 
j1 

[.); (r) ]  

max 
2/r 

(r) (0 a = A as (r) (r) Tr Ai • S  
v r i. r a  

(14) 

The effective lateral seismic force generated on the ith mass follows 
directly since 

(r) • (r) (r) (r) (r) (r) [Fi 3 a mi  .yi a mi 2w Ai S
v

...c
r 
 a miAi ei

r a
S (15) 

max max r 
r 

For future reference it is convenient to express this latter 
result in a form frequently embodied in design codes and directly compar- 



After substituting the values of a
r

t equation (13), this may be 
expressed as 

• 

able to the results of our analysis of a one-mass system. This involves 
the determination of the rth mode base shear and its resolution into 
Lateral forces applied to the structure. In any mode, to satsify dynamic 
equilibrium, the sum of all the effective forces acting on the structure 
must equal the base shear or 
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which is directly equivalent to equation (9) for the one-mass system. W(r), 
which may be considered as the effective weight of the equivalent one- 
mass system for the rth mode, is given by 

(17) 

W(r) .E, wjAj 
(r) 2  

(18) 

(j!1 
w
J
A
J 

where wj  represents the weight of the mass concentrated at the jth  floor. 

The resolution of the base shear into equivalent lateral seismic 
forces distributed throughout the height of the structure is found after 
ar is eliminated from equations (15) and (16). Thus 

F
i
(r) s VB(r)  (wi  Ai(r) 

n Cr) 
I wiAi 
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( 19 ) 



Earthquake Spectrum Analysis for Multi-Story Structures  

The above analysis reveals that the concept of response spect-
rum may now be combined with that of modal superposition to yield an 
approximate solution for the maximum response of a multi-story structure. 
The procedure for calculating the earthquake generated motions and re-
sulting forces may be summarized in four separate steps 

(1) Calculate the modal periods and associated normal mode shapes of 
the structure. Assign appropriate values of damping to each normal 
mode. 

(2) For each mode, read directly from the response spectrum appropriate 
to the particular ground disturbance being considered, the maximum 
modal response for the appropriate period and damping established 
in step (1). 

(3) Evaluate the modal participation factors, equation (13), from the 
data of step (1) and obtain the contribution of each mode to the 
total response of the complete system by multiplying the appropriate 
spectrum quantity by the modal participation factor and the mode 
shape. 

(4) Combine the values of the individual mode contributions from step 
(3) to find the total response. The most suitable method of 
combination of modal responses is discussed below. 

Combination of Modal Responses  

Since the individual modal maxima will normally occur at differ-
ent times, Fig 2, the sum of the absolute values of each modal contribution 
gives an upper bound to the total system response which, in general, 
would be overly conservative. The error arising from an absolute super-
position of the spectral maxima can be overcome, in part, by taking the 
total maximum response as equal to the square root of the sum of the 
squares of the individual modal maxima. This criterion, which is based 
on statistical considerations (10, 11), yields the maximum probable earth-
quake response and evidently leads to lower values than that given by the 
absolute sum. 

Since the bulk of the energy of vibration of a multi-story 
structure is normally contained in the lower modes of vibration, it is 
generally sufficient to consider only the first 3 or 4 modes in the modal 
combination (12). 

Illustrative Example  

To illustrate modal spectrum analysis we will apply the 
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preceding principles to evaluate the dynamic response of a 3-story struc-
ture when subjected to the El Centro earthquake of 1940. The structure 
is idealized as shown in Fig. 9 by assuming its mass concentrated at the 
floor levels. The floor diaphragms are assumed to be infinitely rigid so 
that there are no rotations at the points of mass concentration. 

For the given masses and stiffnesses the natural periods and 
mode shapes were calculated by an automatic digital computer using the 
frequency determinant approach with the results shown in Fig. 9. The 
spectrum responses of the one-degree-of-freedom systems equivalent to 
these normal modes were next read directly from Fig. 4. These depend 
only on the mode periods and damping. In this example the spectrum values 
selected are the displacement responses; the values of Sd  appropriate to 
each mode are also tabulated in Fig. 9. 

The modal participation factors are evaluated by applying 
equation (13) to the information shown in Fig. 9. The product of the 
participation factors, mode shapes and appropriate spectrum quantities, 
either Sa, Sv  or Sd, leads to the response functions desired and tab-
ulated in Table I, which presents modal values of displacements, acceler-
ations, effective seismic forces and inter-story shears. The modal 
displacements, accelerations and forces are obtained from equations (12), 
(14), and (15) respectively. In each mode, the inter-story shear is found 
by an algebraic summation of the effective forces from the top downward. 

The maximum possible response values, column 6, are found by 
summation of the absolute individual mode values. In computing the 
combined response, signs are not attached to the individual mode values 
since each mode can operate in either direction, Fig. 2. A root mean 
square calculation is performed with the individual modal values of dis-
placements, accelerations and shears to yield the maximum probable 
values of these quantities, column 7. Note that the first mode makes the 
major contribution to the shears; the higher modes are relatively more 
important in the case of accelerations. 

For tall structures exhibiting many degrees-of-freedom, the 
computational problem involved in an analysis of the above type is 
extremely laborious and is best done by computing machines. 

Influence of Inelastic Behaviour and Other Factors  

The preceding account of structural behaviour is based on a 
purely elastic response. Structures designed in accordance with existing 
seismic code provisions do not generally show evidence of the distress 
which might be expected if the dynamic lateral forces calculated by 
elastic analysis, which exceed signigicantly the code design forces, were 
actually generated as a result of earthquake motions to which they have 
been subjected. It is widely accepted that this discrepancy may be 



allowed for, at least in part, by acceptance of some plastic deformations 
of buildings or their foundations, during severe earthquakes. Analysis 
of inelastic structural response indicates that moderate plastic deform-
ations absorb large amounts of energy from earthquake generated motions. 
This has the effect of reducing the response of the system and limiting the 
lateral forces developed in the structure. This will be discussed in 
the following lecture,. 

While the theoretical principles outlined above focus attention 
on important parameters influencing the behaviour of structures during 
earthquakes, it should be recognized that in addition to inelastic 
deformations, other factors may play a significant role in determining 
dynamic structural response. Among these are: soil conditions at the 
site, building and ground interaction, and alterations to earthquake 
motions due to interference from the structure itself (feedback). Many 
of these problems are complex and have not been completely investigated 
or are not yet fully understood; some will be discussed in later lectures. 

Summary  

1. The seismic forces generated in a structure depend on the character-
istics of the earthquake ground motions and the characteristics of 
the structure • 

2. The response spectrum provides a way of separating that part of the 
response calculation which depends upon the earthquake disturbance 
from that part which involves mainly the structural properties. 
From the spectrum curves it is possible to read off the spectrum 
response of a single-degree-of-freedom system; the maximum response 
of a mode of vibration of a more complex system can also be deter-
mined from the response spectrum. 

3. The normal mode shapes, natural periods and dampings of a building 
are the characteristics of the structure which control its response 
to any disturbance. The mode shapes and periods are functions of 
the mass and stiffness distribution of the structure. 

LI. Small amounts of damping produce large reductions in the maximum 
response. The damping is a function of the material and type of 
construction of a structure. 

5. The maximum response of multi-story structures can be evaluated by 
modal superposition principles. The spectrum concept provides a 
convenient approach to modal superposition. 

6. The degree to which each normal mode contributes to the total response 
is given by the product of the modal participation factor, the modal 
shape and the appropriate modal response spectrum. This involves 
a prior calculation for the determination of the modal periods and 
shapes. 



7. A root mean square combination of the independent modal responses 
provides the most suitable means of establishing the maximum probable 
total response developed in the structure. It is generally satis-
factory to include only the first three or four mode contributions 
in this calculation. 

8. The ability of a structure to deform plastically has the effect of 
limiting the lateral forces generated by an earthquake. As a result, 
the strength and stiffness requirements can be less than those 
demanded by a strictly elastic analysis. Other factors, such as 
soil conditions and building and ground interaction, may play an 
important role in determining dynamic structural response. 
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_LE I MODAL SPECTRUM RESPONSES 

(1) 

Response Quantity 

(2) 

Mass 
. 

(3) (4) (5) 
Mode 

(6) 
Max. Possible 

(7) 
Max. Probable 

Response r 1111 . r .,.2 . r 11, 3 Response 

ui
(r)• mass displacement (in.) i "3 • 3.570 -0.449 0.028 4.047* 3.595

** 

sm  A (r)  a S (r) 
i r d 

2 
1 

2.220 
0.896 

0.280 
0.202 

-0.081 
0.144 

2.581 
1.242 

2.265 
0.938 

isi(r)go mass acceleration (ft./sec.2) i "3 20.70 -11.16 1.586 33.45 23.50 

is Ai
(r) ar Sd wr

2 2 12.88 6.94 -4.795 24.62 15.40 

1 5.17 5.00 8.530 18.70 11.10 

FiMEP effective forces (kips) i "3 96.31 -51.92 7.79  
(r) 2 is Ai ar Sd mi wr 

2 
1 

119.64 
48.30 

64.79 
46.56 

-44.65 
79.50 

3rd story 1  '3 96.31 -51.92 7.79 156.02 109.69 
Shears (kips) 2nd story 2 215.95 12.87 ..,36.85 265.67 219.45 

Ease 1 264.25 59.44 42.65 366.34 274.19 

21 u) r Tr 
3.570 + 0.449 + 0.028 4.047 

* *
1 3.5702  + 0.4492  + 0.0282. 3.595 
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